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Interaction-site-model description of collective excitations in classical molecular fluids

Song-Ho Chong1 and Fumio Hirata2,*
1Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606, Japan

2Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444, Japan
~Received 10 September 1997!

We describe a molecular theory for liquid dynamics that provides a method for calculating dynamical
correlation functions of classical molecular fluids. The theory is based on the generalized Langevin equation
and on the interaction-site model for molecular liquids. A simple model for memory functions is developed by
generalizing the conventional one that has been successfully applied to monatomic systems. The theory is
applied to the calculation of longitudinal current spectra of a model diatomic liquid and collective excitations
in this solvent are investigated. We also clarify how these excitations originate from the translational and
rotational motions of molecules.@S1063-651X~98!06202-3#

PACS number~s!: 61.20.Lc, 61.25.Em
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I. INTRODUCTION

The study of the propagation of collective excitations
finite wave vectors in molecular fluids has been a subjec
intense investigation through experiments@1–3#, molecular-
dynamics ~MD! simulations @4–9#, and dielectric theories
@10,11# in the past decade. In their MD simulation studie
Ricci et al. @5# observed two different excitation modes
water: an expected one associated with the sound prop
tion ~an acoustic mode! and a newly found high-frequenc
optical mode. Since the former is related to the center
mass motions of molecules@8# and the latter is known to
stem from rotational motion@5,7#, these two different exci-
tations are expected to occur generally in molecular liqu

In this paper we develop a molecular theory to study s
collective excitations in polyatomic fluids. Two elements
the statistical mechanics are required to build such a the
which have been developed relatively independently:
equilibrium statistical mechanics of static structure factors
molecular liquids and the general formalism describing
time evolution of relevant dynamical variables.

A traditional model for describing the equilibrium stru
ture of a polyatomic fluid is the use of the rotational inva
ants to represent the orientational dependence of the inte
lecular interactions and the static correlation functions@12#.
However, methods based on this model become increasi
cumbersome as asphericity of a molecule gets larger, s
the convergence of the invariant expansion is slow. In
equilibrium theory of molecular liquids, this problem ha
been successfully bypassed by using the interaction
model @13,14#, in which a molecule is seen as consisting
interaction sites most commonly located at the center of c
stituting atoms. In this model, given the intramolecular c
relations~‘‘bonds’’ ! between atoms, the orientational corr
lation between a pair of molecules is represented by a den
correlation function matrix whose components are center
center ~i.e., radial! correlations between sites of the mo
ecules. The method based on this model, referred to as
reference interaction-site method~RISM! @13,14#, and its ex-

*Author to whom correspondence should be addressed.
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tended version@15,16#, which is capable of treating pola
fluids, has been successful in describing a large variety
equilibrium phenomena in the physical chemistry of liqui
and solutions.

In the theoretical development of the calculation of tim
correlation functions of liquids at wavelengths and freque
cies of a molecular scale, memory functions, formaliz
through the use of the projection-operator methods@17–19#,
have played a key role. Since, in general, the memory fu
tions cannot be evaluated exactly, several approximate m
els have been developed and successfully applied to the
namical problems of monatomic fluids@20–22#. By
generalizing this rather successful framework to polyatom
fluids based on the interaction-site representation of a m
ecule, it is possible to develop theories for dynamical cor
lation functions of molecular liquids and solutions. Alon
this line, Hirata and co-workers have proposed a theory
solvent dynamics, the site-site Smoluchowski-Vlas
~SSSV! theory @23#, and a molecular theory for solvatio
dynamics@24#. Since the SSSV theory in its current form
valid only in the diffusion regime, in the present study w
extend this theory incorporating the non-Markovian effe
through the use of a simple model for memory functions

An advantage of our theoretical approach is that, althou
both experiments and MD simulations have difficulty in o
taining the information in the important range of small wa
vectors, it overcomes this limitation by construction a
more insight into the nature of excitations in molecular flui
can be gained.

The paper is organized as follows. In the following se
tion we develop an interaction-site representation for solv
dynamics based on the generalized Langevin equa
~GLE!. A simple model for memory functions appearing
the GLE is developed by generalizing a procedure that
been successfully applied to monatomic systems. The po
tial applicability of our theory is demonstrated in Sec. III b
applying it to the study of collective excitations in molecul
liquids. Section IV concludes the paper. The Appendix
devoted to the evaluation of elements of the frequency m
ment matrices~to be defined below! that are required in our
theoretical calculations.
1691 © 1998 The American Physical Society
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1692 57SONG-HO CHONG AND FUMIO HIRATA
II. THEORY

In this section we develop an interaction-site represe
tion for solvent dynamics based on the GLE. In contras
the monatomic solvent case, all functions appearing in
GLE for a molecular liquid take matrix forms. Througho
the paper, the fluid is assumed to be homogeneous and
tropic.

A. Generalized Langevin equation

We begin with the definition of the site-site intermedia
scattering function matrix whose components are given b

Fab~k,t ![
1

N
^dra~k,0!* drb~k,t !&, ~1!

in which dra(k,t) denotes a local density of atom~site! a at
time t in Fourierk space,

dra~k,t ![(
i

eik•r i
a

~ t !, ~2!

andN is the total number of the molecules in the system.r i
a

specifies the location ofa atom in thei th molecule. Hereaf-
ter, greek subscripts and superscripts refer to the interac
sites of a molecule and roman letters label the molecu
unless specified otherwise. The initial value ofF(k,t) is the
matrix of the site-site static structure factors

F~k,0![x~k!5w~k!1rh~k!, ~3!

where w(k) and h(k) are the intramolecular and intermo
lecular total correlation function matrices defined by

wab~k![
1

N K (
i

e2 ik•r i
a
eik•r i

bL , ~4!

rhab~k![
1

N K (
i

(
j Þ i

e2 ik•r i
a
eik•r j

bL ~5!

andr is the average density of the solvent. Having assum
the molecule to be rigid,wab(k) takes the form

wab~k!5 j 0~klab!, ~6!

wherej 0(x) is the zeroth-order spherical Bessel function a
l ab denotes the ‘‘bond’’ length betweena andb sites.

We choose the external wave vectork such that it is along
the z axis of the space-fixed laboratory frame. With th
choice, the continuity equation reads

dṙa~k,t !5 ik(
i

v i ,z
a ~ t !eik•r i

a
~ t ![ ik j a~k,t !, ~7!

wherev i ,z
a denotes thez component of the velocity ofa atom

in the i th molecule. The final equality defines the longitud
nal current density ink space, the time-correlation functio
of which is the site-site longitudinal current correlation fun
tion

Jab~k,t !5
1

N
^ j a~k,0!* j b~k,t !&. ~8!
a-
o
e

so-

on
s

d

d

The matrices of the site-site dynamic structure factors
the longitudinal current spectra are respectively defined

S~k,v![E
2`

`

dt eivtF~k,t !,

CL~k,v![E
2`

`

dt eivtJ~k,t !. ~9!

The continuity equation~7! implies that these two matrice
are connected through the relation

CL~k,v!5
v2

k2 S~k,v!. ~10!

The standard procedure of the projection operator form
ism leads to the following GLE in the time domain@25#:

F̈~k,t !1^vk
2&F~k,t !1E

0

t

dt KL~k,t2t!Ḟ~k,t!50.

~11!

In this equation,̂ vk
n& denotes the normalizednth frequency

moment matrix ofS(k,v) defined through the relations

vk
n[

1

2p E
2`

`

dv vnS~k,v!5~21!n/2F dn

dtn
F~k,t !G

t50

,

~12!

^vk
n&[vk

nF 1

2p E
2`

`

dv S~k,v!G21

5vk
nx21~k!, ~13!

where we have used the inverse relation of Eq.~9! and the
definition of x(k) @see Eq.~3!#. Explicit expressions of ele-
ments of the frequency moment matrices depend on mole
lar models, and those of the second and fourth orders
diatomic molecule depicted in Fig. 1, which we consid
throughout the paper, are reported in the Appendix.

FIG. 1. Schematic representation of a diatomic molecule, c
sisting of atomsA andB, in the body-fixed molecular frame wher
the origin is taken to be the center of mass and thez axis is along
the principal axis of the molecule.zA and zB denote thez coordi-
nates of atomsA andB, respectively, andl AB is the bond length of
the molecule.



e
re

n

la
o-

el
i

lso

s of

ilar

e-

ite
for
e
ion
y-

ti-
ce
-
is
c-
el-

of
ma-

nc-

57 1693INTERACTION-SITE-MODEL DESCRIPTION OF . . .
KL(k,t) in Eq. ~11! is the memory function matrix, a
model for which will be investigated below. The initial valu
of KL(k,t) can be expressed in terms of the normalized f
quency matrices as@22,25#

KL~k,0!5^vk,L
2 &2^vk

2&[D~k! with

^vk,L
2 &[^vk

4&^vk
2&21. ~14!

To obtain the GLE in the frequency domain, let us defi
the Laplace transform as

F̃~k,z![ i E
0

`

dt eiztF~k,t ! ~ Im z.0!. ~15!

Equation~11! then takes the form

F̃~k,z!52$zI2@zI1K̃L~k,z!#21^vk
2&%21x~k!, ~16!

where we notice Eq.~3!. It follows directly from Eq.~15!
that

lim
e→0

F̃~k,v1 i e!5F8~k,v!/21 iF9~k,v!/2, ~17!

with the quantities on the right-hand side defined by

F9~k,v![E
2`

`

dt eivtF~k,t !, ~18!

F8~k,v![
1

p
PE

2`

`

dv8F9~k,v8!/~v82v!, ~19!

where P denotes the principal integral. Applying these re
tions to Eq.~16!, one obtains the GLE in the frequency d
main

S~k,v!5S Y~k,v!@KL9~k,v!#21Y~k,v!

1
v2

4
KL9~k,v! D 21

^vk
2&x~k!, ~20!

in which Y(k,v) is defined by~I being the unit matrix!

Y~k,v![v2I2^vk
2&1

v

2
KL8~k,v!. ~21!

We next consider single-particle counterparts. The s
part of the site-site intermediate scattering function matrix
defined by

Fab
s ~k,t ![^dra

s ~k,0!* drb
s ~k,t !&, ~22!

wherera
s (k,t) denotes a local density ofa atom in an arbi-

trarily chosen tagged molecule

dra
s ~k,t ![eik•r1

a
~ t !. ~23!

The initial value ofFs(k,t) is

Fs~k,0!5w~k!. ~24!
-

e

-

f-
s

The self-part of the site-site dynamic structure factors, a
called the incoherent dynamic structure factorsSab

s (k,v),
are defined as the time Fourier transform ofFab

s (k,t). The
unnormalized and normalized frequency moment matrice
Ss(k,v) are defined as in Eqs.~12! and ~13!:

vk,s
n [

1

2p E
2`

`

dv vnSs~k,v!5~21!n/2F dn

dtn
Fs~k,t !G

t50

,

~25!

^vk,s
n &[vk

nF 1

2p E
2`

`

dv Ss~k,v!G21

5vk,s
n w21~k!.

~26!

The GLE in the frequency domain can be derived in a sim
manner, the result being

Ss~k,v!5S Ys~k,v!@KL
s9~k,v!#21Ys~k,v!

1
v2

4
KL

s9~k,v! D 21

^vk,s
2 &w~k!, ~27!

whereKL
s denotes the memory function matrix for the singl

particle case and we have defined

Ys~k,v![v2I2^vk,s
2 &1

v

2
KL

s8~k,v!. ~28!

B. Simple exponential model for KL„k,t… and KL
s
„k,t…

For a molecular liquid represented by the interaction-s
model, Hirata has employed an overdamped description
the memory kernel@23# and Friedman and co-workers hav
proposed the reference memory function approximat
@26,27#. However, both of the approximations require d
namical information as inputs~e.g., knowledge of diffusion
constants is prerequisite in the former, while the latter u
lizes a known time-correlation function of some referen
dynamical variable! and do not offer a self-contained frame
work for solving dynamical problems. To overcome th
limitation, we propose a simple model for the memory fun
tion matrix that is a direct generalization of the one dev
oped by Lovesey@28,29# for treating monatomic liquids.

We write KL(k,t) in Eq. ~11! as

KL~k,t !5exp@2tt21~k!#D~k!, ~29!

where we notice Eq.~14! andt(k) is a time-constant matrix
to be specified below. It should be noted that this form
KL(k,t) guarantees that the first three nonzero moment
trices ofS(k,v) are correct regardless of the model fort(k).
Defining Ut(k), which diagonalizest21(k), one has

Ut
21~k!t21~k!Ut~k!5diag@tl

21~k!#, ~30!

wheretl
21(k)’s denote eigenvalues of the matrixt21(k) and

diag~ ! represents a diagonal matrix. Then the memory fu
tion matrix can be written as

KL~k,t !5Ut~k!@diag~e2t/tl~k!!#Ut
21~k!D~k! ~31!
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1694 57SONG-HO CHONG AND FUMIO HIRATA
and in the frequency domain it follows from Eq.~17! that

KL8~k,v!522Ut~k!FdiagS v

v21@1/tl~k!#2D GUt
21~k!D~k!,

~32!

KL9~k,v!52Ut~k!FdiagS 1/tl~k!

v21@1/tl~k!#2D GUt
21~k!D~k!.

~33!

Now we specify 1/tl(k) by generalizing the procedure o
Lovesey@28,29#. We first introduce a matrixUD(k) that di-
agonalizesD(k):

UD
21~k!D~k!UD~k!5diag@Dl~k!#, ~34!

whereDl(k)’s denote eigenvalues of the matrixD(k). With
the matrixUD(k), the square root of the matrixD(k) can be
defined

D1/2~k![UD~k!$diag@ADl~k!#%UD
21~k!. ~35!

Then, generalizing the procedure of Lovesey, we w
tl

21(k) in the form

tl
21~k!5jlADl~k!. ~36!

The constantjl is determined by requiring that the resulta
S(k,v50) coincide with SG(k,v50) in the k→` limit,
whereSG(k,v) is defined as the time Fourier transform
the Gaussian-approximated self-part of the intermediate s
tering function matrix

FG~k,t !5exp@2 1
2 ^vk,s

2 &t2#w~k!. ~37!

Since elements of the frequency moment matrices depen
molecular models, so dojl’s.

As an example, using the results of the Appendix,
expression ofjl for the diatomic molecule in Fig. 1 is foun
to be

jl5A2

p S C

D221D , ~38!

in which the constantsC andD are respectively given by

C[3S kBT

M D 2

14
~kBT!2

MI
zl

21
8

5 S kBT

I D 2

zl
4,

~39!

D[
kBT

M
1

2kBT

3I
zl

2.

Here M and I denote the total mass and the principal m
ment of inertia of the diatomic molecule, respectively, andzl

is specified in Fig. 1.
For any model for diatomic molecule, it is found that a

jl’s are close to each other~and they are approximatel
equal to 1!. In view of this, we approximate

Ut~k!'UD~k!. ~40!
e

at-

on

e

-

Now all the quantities appearing in the right-hand side of E
~31! are specified. A similar model can be constructed for
single-particle counterpartKL

s(k,t), starting from

KL
s~k,t !5exp@2tts

21~k!#Ds~k! with

Ds[^vk,s
4 &^vk,s

2 &212^vk,s
2 &, ~41!

and generalizing the procedure of Lovesey, as we have d
above.

III. RESULTS AND DISCUSSION

A. System description

Throughout the paper we consider a solvent consisting
rigid diatomic molecules depicted in Fig. 1 with constitue
atoms A and B of masses mA536 g mol21 and mB
54 g mol21 separated from each other by a fixed distance
l AB52.0 Å. Atoms A and B carry partial chargesqA5
20.25e andqB510.25e, respectively, and the resultant d
pole moment is 2.4 D. The Lennard-Jones parameters
sA54.0 Å and eA /kB5200 K for atomA and sB52.0 Å
andeB /kB5100 K for atomB. The number density is 0.01
molecules Å23 and the temperature is 250 K.

Figure 2 gives the site-site static structure factors~3! cal-
culated by the extended version of RISM@15,16#. The peak
positions arekmax51.69 Å21 and kmax51.65 Å21 for A-A
andB-B pairs, respectively. Note that in thek→0 limit, all
the site-site structure factors coincide@12# and we define

x~0![xAA~0!5xAB~0!5xBB~0!. ~42!

We also define the following quantity for later convenienc

x9~0!5xAA9 ~0!1xBB9 ~0!22xAB9 ~0! with

xab9 ~0!5 lim
k→0

d2xab~k!/dk2. ~43!

FIG. 2. Site-site static structure factors of the diatomic m
ecule, defined in Eq.~3!, calculated by the extended version of th
RISM.
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57 1695INTERACTION-SITE-MODEL DESCRIPTION OF . . .
B. Eigenmodes of the system

In this subsection we investigate eigenmodes of the s
tem and how each atom in the molecule contributes to
modes. To find the eigenmodes ofF(k,t), we neglect the
damping term~represented by the memory function matri!
in Eq. ~11! and obtain

F̈~k,0!52^vk
2&F~k,0!. ~44!

Elements of^vk
2& for the diatomic molecule can be calcu

lated using Eqs.~13!, ~A1!, and ~A18! and the eigenmode
can be obtained by diagonalizing this matrix. The fact t
^vk

2& for the diatomic molecule is 232 matrix naturally
leads to the possible existence of two modes, which turn
to be acoustic and optical ones, as is explained below.

In Fig. 3 we report the results of the diagonalization
^vk

2&. The solid line in Fig. 3~a! represents the dispersio
curve corresponding to the acoustic branch. It is seen tha
dispersion behavior of the acoustic mode is very similar
that of a monatomic system. Thek→0 limit of the eigenfre-
quency of this mode is given by@5#

vacou
2 ~k→0!5

kBT

Mx~0!
k2, ~45!

i.e., that of the ordinary sound mode that propagates with

FIG. 3. ~a! Eigenfrequencies as evaluated by diagonaliz
^vk

2&. Solid and dashed lines give the eigenfrequencies of
acoustic and optical modes, respectively.~b! xA ~solid line! andxB

~dashed line! defined in the text corresponding to the acous
mode.~c! xA ~solid line! andxB ~dashed line! corresponding to the
optical mode.xA andxB are normalized such thatxA

21xB
251.
s-
e

t

ut

f

he
o

e

isothermal sound velocity, consistent with the fact that e
ergy fluctuations are not explicit dynamical variables in o
theory.

The contributions from each atom to the acoustic mo
can be extracted in the following way. Diagonalizing th
matrix ^vk

2& corresponds to turning the description of th
system in terms of the densities of each atomdrA(k) and
drB(k) to that in terms of their linear combination:

xA~k!drA~k!1xB~k!drB~k!, ~46!

wherexA(k) andxB(k) are the components of the eigenve
tor corresponding to the mode. It can be readily found for
acoustic mode that

lim
k→0

@xA~k!,xB~k!#}@1,1#. ~47!

This is consistent with the fact that the sound mode ste
from the center-of-mass~translational! motion of the mol-
ecules, i.e., each atom in the molecule equally contribute
this mode.

Figure 3~b! summarizesxA(k) andxB(k) of the acoustic
branch at various wave vectors, normalized such thatxA

2(k)
1xB

2(k)51. It is seen from the figure thatxA(k)'xB(k)
holds well in the small-k ~up to '1.0 Å21! region. In the
large-k ~i.e., k@kmax! region, however, it is found tha
xA(k)'1 with xB(k)'0, i.e., the dispersion curve of th
acoustical branch in this region reflects the self-motion~the
single-particle motion! of the heavier atomA. ~The collec-
tive and single-particle nature of the modes will be discus
in Sec. III C.! In the intermediate-k ~i.e., k'kmax! region,
xA(k)'xB(k) does not hold andxB(k) becomes even nega
tive @see Fig. 3~b!#. As will be clarified below, this fact re-
veals that the rotational motion is also involved in thisk
region.

We next turn our attention to the dispersion relation of t
optical branch of̂ vk

2&, presented as a dashed line in F
3~a!. The optical branch is well separated from the acous
one at all wave vectors~due to the large difference in th
masses of constituent atoms! and it is apparent from the fig
ure that this mode does not vanish in thek→0 limit. ~The
term ‘‘optical’’ comes from this fact.! The eigenfrequency in
this limit is given by@5#

vopti
2 ~k→0!5

4kBT

3Ix9~0!
l AB
2 ~48!

and the corresponding eigenvector, using the notation in
~46!, turns out to be

lim
k→0

@xA~k!,xB~k!#}@zA ,zB#. ~49!

Note from Fig. 1 thatzA and zB are opposite in sign„the
solvent model used here gives limk→0@xA(k),xB(k)#5
@20.11,0.99# when the norm of the eigenvector is norma
ized to unity…, thusA and B atoms contribute to this mod
with the out-of-phase fashion in terms of Eq.~46!. Since the
magnitude ofza gauges the efficiency of atoma for partici-
pating in the orientational motion, the optical mode is e
dently related to the rotational motion of the molecule

e
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1696 57SONG-HO CHONG AND FUMIO HIRATA
@This is also obvious by noting that Eq.~48! depends on the
moment of inertia of the molecule.#

Figure 3~c! presentsxA(k) andxB(k) corresponding to the
optical mode at various wave vectors.~Note that since gen
erally ^vk

2& is not a symmetrical matrix, the eigenvecto
corresponding to the acoustic and optical modes are no
thogonal to each other.! It is seen that @xA(k),xB(k)#
}@zA ,zB# is well satisfied in the small-k ~up to approxi-
mately 1.0 Å21! region. In the larger-k region, it is found
that the dispersion curve is dominated by the single-part
contribution from the lighter atomB, i.e., xB(k)'1 with
xA(k)'0.

So far we discussed the eigenmodes ofF(k,t), but a simi-
lar analysis can be applied to those of the longitudinal c
rent correlation functionJ(k,t). The eigenmodes ofJ(k,t)
can be obtained by the same manner from the GLE
J(k,t) which takes a form similar to Eq.~11!, and it follows
after the nondamping approximation

J̈~k,0!52^vk,L
2 &J~k,0!, ~50!

which clarifies the physical meaning of^vk,L
2 & defined in Eq.

~14!. Elements of̂ vk,L
2 & for the diatomic molecule can b

calculated using Eqs.~13!, ~A20!, and~A22! and the eigen-
frequencies and eigenvectors can be found by diagonali
this matrix, the results of which are presented in Fig. 4.

C. Longitudinal current spectra

In the preceding subsection we discussed the eigenm
of the system within the nondamping approximation. He

FIG. 4. Eigenfrequencies and the components of the eigen
tors for ^vk,L

2 & defined in Eq.~14!. The notation is the same as i
Fig. 3.
r-

le

r-

r

ng

es
e

we analyze the collective excitations in our model liquid
solving the full GLE that incorporates the damping effe
represented by the memory function matrixKL(k,t).

As in other studies@5–7,9–11#, we consider the longitu-
dinal current spectra, rather than the dynamic structure
tors, in investigating the collective excitations in the liqu
since the former always exhibits a peaked structure e
when the inelastic peaks in the latter are not well defin
@20#. The physical information contained in these two qua
tities, however, is basically the same due to Eq.~10!.

Before embarking on the analysis of the longitudinal c
rent spectra, we briefly comment on the relaxation times
the memory functions defined through Eq.~29!. In Fig. 5 we
report the wave-vector dependence of the relaxation tim
calculated from Eqs.~36! and~38!: The solid line gives those
corresponding to the acoustic mode and the dashed line
optical mode. It is seen from the figure that the componen
the optical mode relaxes faster than that of the acoustic m
at all wave vectors. It is worthwhile to note at this point th
our prescription, Eq.~36!, implies an infinite relaxation time
for the acoustic mode in thek→0 limit since Dl(k) corre-
sponding to the mode vanishes ask2 in the small-k region,
which is inconsistent with the prediction of the hydrod
namic theory @22#. The inconsistency also occurs in th
original theory of Lovesey@28,29#. It is known, however, in
the monatomic liquid case that, although the simple ex
nential model for memory functions~often referred to as the
viscoelastic model! is only expected to be reliable for wav
vectors outside the strict hydrodynamic regime, the con
quences of the above inconsistency are likely to be no
serious in practice@22#. Anticipating this to be valid also in
the case of molecular fluids, we believe the essential feat
of the results to be presented below will not be altered s
nificantly even after the inconsistency is removed in so
way. This defect in the present theory, caused by the inc
rect relaxation times in the small-k regime, may be remedied
by improving the approximation scheme for memory fun
tions, and such a study, exploiting the mode-coupling
proximation, is currently under way in our group.

The longitudinal current spectra at various wave vect
are calculated using Eqs.~10! and ~20! with the simple ex-
ponential model forKL(k,t) of the form given by Eq.~29!

c-

FIG. 5. Eigenvalues of the relaxation-time matrix as defined
Eq. ~29!. The solid line gives the relaxation times corresponding
the acoustic mode and the dashed line the optical mode.
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and the results forA-A andB-B pairs are presented as sol
lines in Figs. 6 and 7, respectively.~Remember that atomA
is much heavier than atomB.! Also added in these figure
are the single-particle contributions~i.e., contributions from
the self-motions!, calculated using Eqs.~27! and ~41!, with
the aim of elucidating the collective nature of the excitatio
in the small-k region.

A number of observations can be made concerning
theoretical results given in Figs. 6 and 7. We first note t
two peaks are observable in both of the spectra ak
50.1 Å21. However,CL,AA is dominated by the contribu

FIG. 6. Solid lines, the longitudinal current spectra of theA-A
pair CL,AA(k,v) as a function ofv at the indicatedk ~in Å 21!
values, in arbitrary units; dashed lines, the single-particle contr
tions.

FIG. 7. Solid lines, the longitudinal current spectra of theB-B
pair CL,BB(k,v) as a function ofv at the indicatedk ~in Å 21!
values, in arbitrary units; dashed lines, the single-particle contr
tions.
s

e
t
tion from the lower-frequency acoustic mode and the high
frequency peak~approximately 20 ps21! is only barely seen.
The lower-frequency peak also appears inCL,BB because
both atomsA andB participate in the center-of-mass dens
fluctuations as discussed above. The higher-frequency p
corresponding to the optical mode is exaggerated inCL,BB
since the lighter atomB is much more responsible for th
orientational motion of the molecule. The collective natu
of these two excitations in the small-k region is apparent by
comparing solid lines with dashed ones in Figs. 6 and 7
the large-k region, however, the spectra are almost identi
to those from the single-particle contributions:CL,AA is
dominated by the contribution from the self-motion of ato
A, while that of atomB determines the overall shape o
CL,BB .

The resultant low and high peak frequencies~dispersion
relations! of the longitudinal current spectra are shown
solid lines in Figs. 8~a! and 8~b!, respectively. It is seen from
Fig. 8~a! that the dispersion curve of the low-frequen
acoustic mode is very similar to that of monatomic fluids a
the positive dispersion is apparent from the figure. The d
persion behavior of the optical mode presented in Fig. 8~b! is
qualitatively in accord with that of water reported by Res
Raineri, and Friedman@10#, who calculated it based on
dielectric theory that takes into account the rotational mot
of water.

The reasons for this qualitative correspondence of the
persion behavior of the optical mode between our results
those of Resat, Raineri, and Friedman@10# ~but for water! are

-

-

FIG. 8. Dispersion relation of the~a! acoustic and~b! optical
modes as evaluated from the peak positions in the longitudinal
rent spectra~solid lines!, by diagonalizing^vk

2& ~lower dashed
lines! and by^vk,L

2 & ~upper dashed lines!.
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twofold: similarities in the solvent models and in the descr
tions of the mode. First, although our diatomic solvent mo
seems to be very different from water, they have a simila
other than being molecular liquids in that both of them ha
quite heterogeneous mass distributions of constituent ato
The translational motion is almost carried by atomA in our
model and by an oxygen atom in water, while the rotatio
motion is dominated by that ofB and hydrogen atoms. Sec
ond, we have found in Sec. III B~but within the nondamping
approximation! that the optical mode in the small-k region
~this is the most interesting region! can be described in term
of the linear combination

zAdrA~k!1zBdrB~k!. ~51!

This is ‘‘nearly’’ the same combination as that of the ba
dynamical variable~the local charge density! in the dielectric
theory of Resat, Raineri, and Friedman@10#,

qAdrA~k!1qBdrB~k!, ~52!

in terms of phase sincezA andzB are opposite in sign and s
areqA andqB ~only the relative sign has importance!. That
the descriptions of the optical mode in terms of Eqs.~51! and
~52! are nearly the same can also be understood by no
that the rotational motion gives rise to the local charg
density fluctuations, while the center-of-mass motion d
not due to the charge neutrality of the solvent molecule; i
the former~the rotational motion! that is responsible for the
optical mode.

In this connection, it is also instructive to note that t
following linear combination, which is found to describe th
acoustic mode in the small-k region:

drA~k!1drB~k!, ~53!

is again nearly the same combination as that of the lo
mass-density fluctuations of the system

mAdrA~k!1mBdrB~k! ~54!

in terms of phase since masses are always positive. In
both of the above combinations can give the same desc
tion as far as the dynamics of the acoustic mode in the sm
k region is concerned@9#.

IV. CONCLUDING REMARKS

In the present paper we described a molecular theory
liquid dynamics that provides a method for calculating d
namical correlation functions of polyatomic fluids. Th
theory is based on the generalized Langevin equation an
the interaction-site model of molecular liquids and is capa
of treating the general class of molecular fluids. Another d
tinctive feature of our theory is that it offers a self-contain
framework for solving dynamical problems without makin
reference to any dynamical information from outside, i.e.
requires only the knowledge of parameters for poten
functions and molecular geometry~such as bond lengths! as
in simulation studies. As an application of the theory,
calculated longitudinal current spectra of a diatomic dipo
liquid, discussed the collective excitations in this solve
and clarified how these excitations arise from the tran
-
l

y
e
s:

l

g
-
s
s

al

ct,
p-
ll-

or
-

on
e
-

t
l

r
,
-

tional and rotational motions of the molecules.
The theory presented here can be applied to the des

tion of time-dependent phenomena in polar fluids: solvat
dynamics and dynamical solvent effect on charge tran
reactions will be among the most interesting applicatio
The research for this direction is currently under way in o
group and we plan to report the results in subsequent pap

In order to refine our theory further, several extensions
conceivable by developing approximation schemes
memory functions. The most promising extension will
adopting the mode-coupling approximation, in view of t
success of the mode-coupling theory in describing tim
correlation functions of simple liquids@22#. The research for
this direction is also one of our concerns in the future stu
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APPENDIX

In this Appendix we present an evaluation of elements
the second and fourth frequency moment matrices, as defi
in Eqs.~12! and~25!. Since the final outcome depends on t
molecular model, only the expressions for the diatomic m
ecule depicted in Fig. 1 are reported.

1. Second moment matrix

The outline of the calculation of the second moment m
trix is given in the paper of Ricciet al. @5# and the results for
various molecular fluids are presented by Raineri@30#. Since
one requires similar manipulation repeatedly in obtaining
ements of the fourth moment matrix, we evaluate those
the second moment matrix in some detail. Our treatment h
follows closely that of Raineri@30#.

We first note from Eqs.~7!, ~12!, and~25! that

@vk
2#ab5k2

1

N (
i , j

^v i ,z
a v j ,z

b e2 ik•~r i
a

2r j
b

!&

5k2^v1,z
a v1,z

b e2 ik•~r1
a

2r1
b

!&5@vk,s
2 #ab[k2Jab~k!.

~A1!

The second equality is due to the statistical independenc
the velocities of different molecules at the same time.
view of this relation, it suffices to evaluateJab(k) to obtain
both @vk

2#ab and @vk,s
2 #ab .

Having assumed the molecule to be rigid, one has

vi
a5vi

C1wi3dr i
Ca , ~A2!

ai
a5ai

C1ẇi3dr i
Ca1wi3~wi3dr i

Ca!, ~A3!

wherevi
a andai

a denote the velocity and the acceleration
a atom in thei th molecule, respectively,vi

C andai
C represent

the velocity and the acceleration of the center of mass of
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i th molecule, respectively,wi is its angular velocity, and
dr i

Ca is the vector joining the center of mass and atoma.
Due to the statistical independence of translational

rotational velocities, substituting Eq.~A2! into Eq. ~A1!
gives

Jab~k!5^~v1,z
C !2e2 ik•~r1

a
2r1

b
!&

1^@w13dr1
Ca#z@w13dr1

Cb#ze
2 ik•~r1

a
2r1

b
!&

[Jab
trans~k!1Jab

rot ~k!. ~A4!

The first term can be easily evaluated, due to the statis
independence of the translational velocities and coordina
as

Jab
trans~k!5^~v1,z

C !2&^e2 ik•~r1
a

2r1
b

!&5
kBT

M
wab~k!

5
kBT

M
j 0~klab!, ~A5!

where we notice Eqs.~4! and ~6!.
The evaluation of the rotational partJab

rot (k) is somewhat
involved. To this end, we note thatJab

rot (k) can be written in
terms of a zeroth component of a spherical tensor of ran
defined by@12#

T10
a 5

i

&
@w13dr1

Ca#z . ~A6!

ThenJab
rot (k) can be written as

Jab
rot ~k!522^T10

a T10
b e2 ik•drab&, ~A7!

wheredrab[r1
a2r1

b . Hereafter in this appendix, the lab
specifying the molecule 1 will be dropped. A Rayleigh e
pansion@12# of the exponential gives

e2 ik•drab5(
l ,m

~2 i ! l~2l 11! j l~klab!Clm~ek
~s!!Clm* ~eab

~s! !,

~A8!

in which l ab[udrabu, ek
(s) andeab

(s) denote unit vectors along
k and drab , respectively,j l(x) is the l th-order spherical
Bessel function, andClm is the Racah spherical harmonic
The quantities with the superscript (s) refer to the space
fixed laboratory frame, which we abbreviate as thes frame
from here on.~Do not confuse it with the subscript and s
perscript s indicating single-particle quantities.! Note that
Clm(ek

(s))5dm,0 since we have chosenk to be along thez
axis in thes frame, and Eq.~A7! becomes

Jab
rot ~k!522(

l
~2 i ! l~2l 11! j l~klab!

3^T10
a~s!T10

b~s!Cl0* ~eab
~s! !&. ~A9!

It is more convenient to evaluate the ensemble average
the body-fixed molecular frame~b frame!, which we choose
to be coincident with the inertial principal one. The transfo
mation law to theb frame is@12#
d

al
s,

1

in

-

T10
~s!5(

n
D0n

1* ~V!T1n
~b! , Cl0

~s!5(
n

D0n
l* ~V!Cln

~b! ,

~A10!

where the quantities with the superscript (b) refer to theb
frame andD(V) is the Wigner function~rotation matrix! in
terms of the Eular angleV, which describes the orientatio
of the molecule with respect to thes frame. Substituting Eq.
~A10! into Eq. ~A9! and using the properties of the Wigne
functions@12#, one has

Jab
rot ~k!52

2

3 (
l

~2 i ! l~2l 11! j l~klab! (
n1 ,n2

~21!n1

3C~ l11;000!C~ l11;n11n2 ,n2,n1!

3^T1n1

a~b!T1n2

b~b!&Cln11n2
~eab

~b!!, ~A11!

whereC( l 1l 2l ;m1m2m) is the Clebsch-Gordan~CG! coeffi-
cient andnI 52n. Due to the properties of CG coefficien
@12#, only l 50 and 2 terms in the above equation can giv
nonzero contribution and one obtains

Jab
rot ~k!52 2

3 j 0~klab!(
n

~21!n^T1n
a~b!T1nI

b~b!& ~A12!

2 2
3 A10j 2~klab! (

n1 ,n2

~21!n1

3C~211;n11n2 ,n2,n1!

3^T1n1

a~b!T1n2

b~b!C2n11n2
~eab

~b!!&. ~A13!

Averages of the form̂ TT& and ^TTC& can be evaluated
using the product rule for spherical tensors@12#:

T1n
a~b!5(

m
C~111;m,n2m,n!wm

~b!r n2m
a~b! , ~A14!

where wn
(b) and r n

a(b) denote the spherical components
w(b) anddrCa(b), respectively.

Finally, let us evaluate the elements ofJab
rot (k) for the

diatomic molecule depicted in Fig. 1. In terms of the qua
tities in theb frame ~which is specified in Fig. 1!, one has

^T1n
a~b!T1nI

b~b!&52
n2

2
zazb^wn

~b!wnI
~b!&, ~A15!

^T1n1

a~b!T1n2

b~b!C2n11n2
~eab

~b!!&52
n2

2
zazb^wn

~b!wnI
~b!&,

~A16!

where we noticeC2n(eab
(b))5dn,0 for the diatomic molecule.

Substituting these into Eq.~A13! and noting ^wx
(b)wx

(b)&
5^wy

(b)wy
(b)&5kBT/I for the diatomic molecule, one obtain

Jab
rot ~k!5

2

3

kBT

I
zazb@ j 0~klab!1 j 2~klab!#. ~A17!

The totalJab(k) for the diatomic molecule is a sum of Eq
~A5! and ~A17!, the final result being
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Jab~k!5
kBT

M
j 0~klab!1

2

3

kBT

I
zazb@ j 0~klab!1 j 2~klab!#.

~A18!

2. Fourth moment matrix

We next consider the fourth moment matrix@vk
4#ab .

From Eqs.~1!, ~2!, and~12!, one has~definingr i j
ab[r i

a2r j
b!

@vk
4#ab5

1

N
^dr̈a~k,0!* dr̈b~k,0!&

5k2
1

N (
i , j

^ai ,z
a aj ,z

b e2 ik•r i j
ab

&

1 ik3
1

N (
i , j

^@ai ,z
a ~v j ,z

b !22~v i ,z
a !2aj ,z

b #e2 ik•r i j
ab

&

1k4
1

N (
i , j

^~v i ,z
a !2~v j ,z

b !2e2 ik•r i j
ab

&

[@vk,s
4 #ab1@vk,d

4 #ab , ~A19!

where@vk,s
4 #ab denotes the self (i 5 j ) part and@vk,d

4 #ab the
distinct (iÞ j ) part.

Substituting Eqs.~A2! and ~A3! into Eq. ~A19! gives
many terms and each term can be evaluated as we have
in deriving Eq.~A18!. After straightforward but lengthy cal-
culations, one has for the self-part of the diatomic molec
.

ri,

er

v

m.

s.
one

e

@vk,s
4 #ab5k2S kBT

M D 2

j 0H 3k21(
g,d

Vgd
2 ~0!J

1k2
~kBT!2

MI
~ j 01 j 2!H 4zazbk2

1 2
3 ~za1zb!(

g,d
zgVgd

2 ~0!J
1k2S kBT

I D 2

zazbH zazb~ 8
5 j 01 16

7 j 21 24
35 j 4!k2

1 8
3 ~ j 01 j 2!1 2

3 ~ j 01 j 2!(
g,d

zg
2Vgd

2 ~0!J .

~A20!

Here we have used the abbreviationj m[ j m(klab) and
Vgd

2 (k) is defined by

Vgd
2 ~k![

r

kBT E dr e2 ik•rggd~r !
]2fgd~r !

]z2

5
r

3kBT E dr ggd~r !H fgd9 ~r !@ j 0~kr !22 j 2~kr !#

1
2fgd8 ~r !

r
@ j 0~kr !1 j 2~kr !#J . ~A21!

In this equation,fgd(r ), fgd8 (r ), and fgd9 (r ) denote the
site-site interaction potential and its first and second der
tives with respect tor , respectively.

The elements of the distinct part can be evaluated i
similar manner. It turns out that all the kinetic terms can
out in the distinct part and one is left with the interactio
terms, which can be summarized as

@vk,d
4 #ab52k2(

g,d
Jag~k!Vgd

2 ~k!Jdb~k!, ~A22!

whereJab(k) in the case of the diatomic molecule is give
by Eq. ~A18!.
ys.
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